
I N
I ~01-110

Progress in the Identification of Airborne

Radar Targets

I R. Carri~re, F.D. Garber, I. Jouny, R. L. Moses
O.S. Sands, W.M. Steedly and E.K. Walton

The Ohio State University

* ElectroScience Laboratory
Department of Electrical Engineering

Columbus, Ohio 43212

I

Technical Report 718048-12
Contrct No. N00014-86-K-0202

June 1989 DI
ELECTE "I SEP 18 1989

Department of the Navy B
Office of Naval Research B
800 North Quincy Street

Arlington, Virginia 22217-5000

I

IIqp P 203



NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

i
I
i
I
i
i
i
i
i
i
i
i
i



I 50272-101

REPORT DOCUMENTATION I. REPORT NO. 2. 3. Recipient's Accession No.
I PAGE

4. Title and Subtitle 5. Report Date

Progress in the Identification of Airborne Radar Targets June 1989
6.

T. Author(s) R. Carri~re, F.D. Garber, I. Jouny, R.L. Moses, O.S. Sands, 8. Performing Org. Rapt. No.

W.E. Steedly, E.K. Walton 718048-12

9. Performing Organisation Name and Address 10. Project/Task/Work Unit No.

The Ohio State University
ElectroScience Laboratory 11. Contract(C) or Grant(G) No.

1320 Kinnear Road (C) N00014-8O-K-0202

Columbus, OH 43212 (G)

I 12. Sponsoring Organization Name and Address 1. Report Type/Period Covered

Office of Naval Research Technical Report

Room 804, Code 1211, 800 North Quincy Street 14.

I Washington, D.C. 22217
15. Supplementary Notes

16. Abstract (Limit: 200 wores)

This report documents a 3nnimary of the work accomplished during the first six months under

the project entitled "Identification of Airborne Radar Targets.'" The accomplishments discussed

include: The development of techniques to estimate and parameterize canonical scattering centers

of a radar object, the development and evaluation of a signal processing technique that estimates

the polarization characteristics of target scattering centers the evaluation of the feasibility of using

bispectruI processing techniques for the purpose of radar target characterization and classification,

and the development of improved techniques for target identification based on structural pattern

3 1 recognition.

17. Document Analysis a. Descriptors

I b. Identifiers/Open-Ended Terms

I- c. COSATI Field/Group

16. Availability Statement 19. Security Class (This Report) 21. No. of Pages

A. Approved for public release; Unclassified 96

Distribution is unlimited. 20. Security Class (This Page) 22. Price

Unclassified

(See ANSI-Z$9.1S) See Iatructions on Reverse OPTIONAL FORM 272 (4-77)
Department of Commerce



I
I

ContentsI
* 1 Executive Summary 1

2 High Resolution Radar Target Modeling Using ARMA Models 2

I 2.1 Canonical Scatterers ........................... 2

2.2 ARM A M odels .............................. 4

2.3 Experimental Results .......................... .. 6

2.3.1 Results from Applying ARMA Techniques to Compact Range

* D ata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Direct Estimation of the Canonical Scatterer Model ..... 11

I 3 Exponential Modeling of Fully Polarized Radar Return 15

3.1 Modeling the Scatterers ...... ......................... 15

3.2 Determining Scatterer Locations and Associated Polarizations. ... 17

3.3 Simulation Results ....... ............................ 18

4 A Study of The Bispectral Estimates of Radar Signals And Appli-

cation To Radar Target Identification 28

4.1 Introduction ....................................... 28

4.2 Problem Formulation: Birange Profile Theory ................ 29

4.3 Classical Bispectrum Estimation Algorithms .................. 32

4.3.1 Indirect Method ....... ........................ 33

4.3.2 Direct Method ....... ......................... 33

4.4 Blade-Sphere Example ................................ 34

4.5 Bispectral Response of Noisy Data ........................ 35

4.5.1 Mean Square Error .............................. 35

4.6 Bispectral Response For Dispersive Scatterers ................ 38-

4.6.1 Single Edge Dispersion ............................ 
38 ft-

4.7 Bispectral Responses for Canonical Aircraft .................. 39 %d 0

4.8 Bispectral Responses for Commercial Aircraft ................ 39 to 0
i4.9 Classification Methods................................40

.. I AvsiaLlIlty Codes

-T IC Aval alad/or

Go^ot Speolal
6~p~1



I
I

4.9.1 Indirect method ...... ......................... 41

4.9.2 Direct method ...... .......................... 42

4.9.3 Comparison .................................. 42

4.9.4 Classification Algorithm .......................... 43

4.10 Radar Target Identification Example ....................... 44

4.11 Conclusions ....... ................................ 45

Investigations of Structural Pattern Recognition Methods for Radar

Target Identification 78

5.1 Introduction ....................................... 78

5.2 Analytical Methods for Likelihood Function Determination ..... .. 80

5.2.1 Conditional String Probability Estimation ........... .. 81

5.2.2 Conditional Symbol Probability Calculations ......... .. 86

5.2.3 Conclusions and Results .......................... 89

5.3 Conversion of Syntactic Classifiers to Deterministic Forms ...... .. 92

6 References 95

I
I
I
I
i
]

iv

I
i



I

I List of Figures

I
2.1 Response of the Concord for N = 30, M = 5 and 10, n = 3, m = 2.

I Data taken between 18-26 GHz .......................... 7

2.2 Response of the Concord for N = 30, M = 10, n = 3,5 and 7, m = 2.

Data taken between 18-26 GHz .......................... 8

2.3 Response of the Concord for N = 30, M = 10, n = 5, m = 2. Data

taken between 18-26 GHz with 10 dB SNR ................... 9

2.4 Response of the Concord for N = 20, M = 10, n = 7, m = 4. Data

taken between 6.25-12 GHz at 0 aad 20 degree aspect angle..... .. 10

2.5 Concord, 18-26 GHz, FFT using 30 data points zero padded to 512,

0 degree aspect angle ................................. 12

2.6 Scaled Picture of the Concord ........................... 13

3.1 707 Scatterers and Polarizations ..... .................... 20

3.2 727 Scatterers and Polarizations ..... .................... 20

3.3 747 Scatterers and Polarizations ..... .................... 21

3.4 DC10 Scatterers and Polarizations ..... ................... 21

3.5 Concord Scatterers and Polarizations ....................... 22

3.6 DC10 Scattcrers and Polarizations, SNR of 10dB .............. 24

3.7 DC10 Scatterers and Polarizations, SNR of 5dB ............... 25

3.8 DC10 Scatterers and Polarizations, SNR of 0dB ............... 26

4.1 Optimum window (minimum bias supremum) in frequency domain. 46

4.2 Optimum window (minimum bias supremum) in range domain. . . 47

4.3 Internal bounce diagram for blade-sphere interaction .......... .. 48

4.4 Frequency response for blade-sphere target ................... 49

4.5 Impulse response for blade-sphere, r0 = 0, ri = 1.6 m, r 2 = 2.4 m. .. 50

4.6 Bispectrum for blade-sphere without window .................. 51

4.7 Bispectrum for blade-sphere ri = 1.6 m, r 2 = 2.4 m. with window.. 52

I 4.8 Bispectrum for blade-sphere with r0 = 1 m ................... 53

4.9 3-D bispectral response for blade-sphere combination ......... .. 54

Iv
I



I

4.10 Impulse response for noisy backscatter from blade-sphere (SNR= -30 I

dB) ......... .................................... 55

4.11 Bispectrum for blade-sphere with noisy data (SNR= -30 dB) . . .. 56

4.12 Impulse response of frequency dispersive backscatter for blade-sphere.

57fs

4.13 Bispectrum of frequency dispersive backscatter for blade-sphere.
4.14 Impulse response of frequency dispersive backscatter for blade-sphere.

(single edge dispersion) ...... ......................... 59

4.15 Bispectrum of frequency dispersive backscatter for blade-sphere with

single edge dispersion ....... .......................... 60

4.16 Bispectral response for fuselage at 0 degrees azimuth, 0 degrees ele-

vation ............................................ 61

4.17 Bispectral response for fuselage and stabilizer at 0 degrees azimuth,

0 degrees elevation ................................... 62

4.18 Bispectral rcsponse for wing at 0 degrees azimuth, 0 degrees eleva-

tion ............................................. 63

4.19 Bispectral response for complete canonical aircraft at 0 deg. azimuth,

0 deg. elevation ....... .............................. 64 3
4.20 Scaled drawings for aircraft used in experimental study ......... 65

4.21 Bispectral response for 747 at 0 degrees azimuth, 0 degrees elevation. 66

4.22 Bispectral response for 727 at 0 degrees azimuth, 0 degrees elevation. 67

4.23 Bispectral response for concord at 0 degrees azimuth, 0 degrees ele- -
vation ............................................ 68

4.24 Bispectral response for DC10 at 0 degree azimuth, 0 degree elevation. 69 n

4.25 Bispectral response for 707 at 0 degrees azimuth, 0 degrees elevation. 70

4.26 Bispectral response for 707 at 10 degrees azimuth, 0 degrees elevation. 71

4.27 Bispectral response for 707 at 20 degree azimuth, 0 degree elevation. 72
4.28 Bispectral response for 707 at 30 degree azimuth, 0 degree elevation. 73

4.29 Bispectral response for 707 at 0 degrees azimuth, 0 degrees elevation 7

and SNR = -5dB ................................... 74

4.30 Conceptual diagram for bispectral radar target classification algo- i
rithm ......... .................................... 75

vi I



I I

I
4.31 Diagram of bispectral radar target classification algorithm as imple-

n mented .......... ................................... 76

4.32 Classification performance assuming complete azimuth information.. 77

5.1 Conditional Probability Overlaps ....... .................... 80

5.2 Octant crossing primitive assignments ........................ 87

5.3 Inscribed staircase region, 5 points ...... ................... 88

5.4 Circumscribed staircase region, 5 points ..... ................ 88

5.5 Octant crossing vs. coherent nearest neighbor ................. 90

5.6 Single level crossing vs. nearest neighbor ..................... 91

5.7 Conversion to deterministic form, (a) non-deterministic automata set

with labeled final 4ats. (b) merged non-deterministic automata. (c)

3 resulting deterministic automata ....... .................... 94

v
U
I
I
I
I
I
I
I

[ vii

I

I



I

1. Executive Summary

This report documents a summary of the work accomplished during the first

six months under the project entitled "Identification of Airborne Radar Targets"

(Contract # N00014-86-K-0202). During this period of the renewed contract, the

progress toward realizing the goals set forth in the statement of work has been rapid,

and has produced a number of key interim results. In particular, we have:

1. Developed techniques to estimate and parameterize canonical scattering cen-

ters of a radar object. The results of this technique are compared with those

obtained using an ARMA estimation technique for single polarization data.

2. Developed and evaluated the performance of a signal processing technique that

estimates the polarization characteristics of target scattering centers. This

technique incorporates polarization-diverse data to obtain a super-resolved

down-range cross-section of the target showing polarization ellipses of the

predominant scattering centers.

3. Evaluated the feasibility of using bispectrum processing techniques for the

purpose of radar target characterization and identification. The results of

this study have identified advantages of bispectrum processing for frequency-

-dizpersive scatterers and indicate the possibility of identifying targets from

the estimated bispectral responses.

4. Developed improved techniques for estimating the statistical parameters of

observed symbol strings for the purpose of target identification based on struc-

tural pattern recognition. In addition, we have developed a tormuiation of the

target identification algorithm that resembles a tree classifier. Reformulating

the algorithm in this way reveals the structural nature of the classifier to the

extent that a relative evaluation of the discrimination capability of particular

symbols may be possible.

The remainder of this report is organized into chapters that more fully discuss

progress and ongoing research in the areas mentioned above.
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2. High Resolution Radar Target Modeling Using ARMA Models I
This chapter discusses research high resolution modeling of radar data to ob-

tain target impulse responses. The techniques are parametric, and rely on scatter-

ing center location estimation, and parameterizing the scattering center by various

attributes. This chapter focuses on single polarization data. Two methods are

considered. One is a canonical scattering center analysis, which employs nonlin-

ear minimization techniques to obtain the estimate. The other approximates this

canonical scattering model by an Autoregressive Moving Average (ARMA) model,

and uses ARMA estimation techniques derived from the signal processing literature.

The latter method is more computationally efficient than the former method.

We begin with a discussion of canonical scattering centers. We next present the

ARNNIA modeling method, and briefly describe the algorithm which is used. Next 1

we present simulation results obtained using compact range data measurements

of model aircraft. Finally, we discuss the canonical scattering center estimation

method.

2.1 Canonical Scatterers

It is well-known [1] that scattering of electromagnetic waves at high frequencies,

i.e. at frequencies such that the wavelength is small compared to the scatterer, can

be modeled as a set of independent scattering centers. There are several varieties

of ca ,onical qr-ttering centers used in this process; typical examples are the point, 1

edge and plate scatterers and the corner reflector [1].

If a target consisting of m scatterers is illuminated using a CW radar, then the 3
backscattered field received by a linearly polarized antenna will give a signal of he

form [2]: 3
m

Yk Kie c (J'2rfk) (2.1)

where K, is the amplitude, ri the relative range, and ti the type of the ith scatterer;

fk is the kth frequency, and m is the number of scatterers. For the canonical

scatterers in [2], tj takes on the following values

I
2

I
I



ti { -. 5,o,o .5,1} (2.2)

I In addition, for stepped frequencies, we can represent fk by

Sfk fo+k6l, k=0,1,2,..., N- (2.3)

where fo, 6 f and N are given parameters of the system under consideration. The

frequency fo represents the lowest frequency the radar system transmits and bf

is the size of the frequency step. Estimation of the parameters in (2.1) from N

lmeasurements leads to a canonical scattering description of the target; see [2].

This model, while based on the physical properties of the scattering process,3 has the disadvantage of being non-linear. A non-linear estimator typically requires

more data to converge to within a given distance of the correct estimate, and also

suffers from the possibility of convergence to a false (local, but not global) minimum,

leading to incorrect estimates.

We are currently investigating two estimators for this model. The first estimator

uses the model (2.1) directly, and estimates the parameters of that model through

a multi-step, non-iterative algorithm. If desired, the quality of the resulting esti-

I mates can be improved further by using the multi-step estimate as an initial guess

for an iterative non-linear least-squares estimator. The second estimator uses an

approximate model of (2.1) that allows linear estimation techniques, specifically an

ARMA algorithm. The second algorithm is more computationally efficient, and has

been studied more extensively.

The approximate model for linear estimation is obtained by replacing the (j27rfk)t

factor in (2.1) with pk. By suitably adjusting the amplitude, the approximate model

can be made to match the original model if the bandwidth involved is not too large.

Thus we arrive at:I m

Yk = diP,  (2.4)
l *=1

where d, is in general not equal to K, in (2.1) because of the approximation involved.

The variable p, can be found from:

pi = , -2irr,/R (2.5)

3I
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In practice the absolute range is not used; instead, ri represents the range relative to

a zero range reference point. R then represents the maximum unambiguozis range

R _C

It should be noted that for t = 0 the correspondence is exact (p will be 1).

The energy associated with a single scattering center is the square of the absolute

value of its contribution to the amplitude, or

N-i 1 - ?N

P, = jdil 2lPip2k = Id,1 2 (2.6)

Equations (2.4) and (2.6) will be used to form the approximate parametric model

of target scattering.

2.2 ARMA Models

In this section we will discuss estimation techniques for the approximate model.

For a more detailed analysis of this model and the corresponding estimation tech-

niques, see [3] and [4].

Equation (2.4) can be formed as the solution of a linear difference equation,
m m-1

yk + Z ayk+, = Z (2.7)
i=1 i=0

A(q-lyk = C(q-)bk (2.8)

where 6 k is the unit impulse sequence. It can be shown [5] that the {P} in equation

(2.4) are the roots of the A(z) polynomial, and the coefficients {di} the partial

fraction residues of C(z) and A(z). It should be observed that this means that the

radar cross section as a function of relative range can be found by taking the square

of the absolute value of

Y(r) C(;jr(i-2r/R)
Y~r) =A(ej-(l2,/R)

m di 0<r<R

"ejr(i-2r/R) - P

I
4
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By observing that for k > 0 the right hand side in (2.7) equals zero, we can find

a linear least squares estimator for the A(z) polynomial:

YM+I YM ... Y1 am]

YM+2 YM+I ... Y2 (2.9)

L YNv-i YN-2 ... YN-M-1

where .l is some integer at least equal to in and where equality will hold for noiseless

data that fits the model perfectly. Appropriate ways for choosing Al are discussed

in [4).

The performance of this estimator can be improved through the use of the

singular value decomposition (SVD) as follows: find the SVD of the matrix Y on

the left hand side of (2.9); let

.1 >- a"2 -- ... > 0M+1 > 0.

be the resulting singular values. Set on+,... oM + 1 equal to zero, reconstruct Y

and solve (2.9) with the new Y. The value of n is chosen to be such that the

first large drop in the value of the {0"i} falls between o, and oU+. This choice

is motivated by the ability of the SVD to partially reject the effects of noise and

unmodeled dynamics on the estimate. This issue is discussed in further detail in

(4].

Once the A(z) polynomial has been found, the {pi} can be estimated through

standard polynomial rootfinding techniques. Given the {pi}, the {di} can be found

from

PI ..PM do [ 0
:k O KLP: 0 (2.10)

where i i'- the (- ';mate for p, found above.

Above we (., -puted an estimate of a polynomial AM(z) of order Al > in, and a

corresponding set of M zeros {pi}; 1 . We also computed amplitudes corresponding

to these zeros. The next step is to separate the n zeros that correspond to the

5
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radar target (signal zeros) from the remaining spurious zeros. The zero separation I
process relies on the observation that since the spurious zeros correspond to modes

that are not present in the data, their estimated energy should be low. To take

advantage of this property, we use the following strategy. First, the amplitudes

{di}i=, corresponding to all M zeros are found using equation (2.10). Then, the

energy of each mode is computed using equation (2.6). The m zeros whose cor-

responding energy is the highest are kept and the remaining ones are discarded.

Then, the energy estimates for the m kept zeros can be refined by recomputing the

amplitude estimation using (2.10) with only the m selected zeros. However, since

the energies for the discarded zeros is low, the difference between the two estimates

should generally be small, so this refinement step may be omitted.

2.3 Experimental Results

In this section we describe results obtained with both types of algorithm. We

first desciibe results obtained by applying the ARMA algorithm to data obtained

from the ESL Compact Range and then present results from the application of the

canonical estimator to simulated data. 3
2.3.1 Results from Applying ARMA Techniques to Compact Range

Data

The main aim of this section is to demonstrate that the ARMA type algorithm i
presented above is robust to changes in model order M and number of singular

values kept n, performs well in the presence of noise and achieves consistent results

across different frequency ranges. On the other hand, the algorithm readily detects

differences between aircraft and is able handle changes in aspect angle.

Figure 2.1 shows estimated responses for a 1:130 model of the Concord using

N = 30 data points taken evenly spaced from 18-26 GHz (corresponds to 138-

200 MHz on a full-size Concord) and model orders M = 5 and 10, keeping n = 3

singular values and m = 2 zeros.

Figure 2.2 shows estimates for M~I = 10 order model from the same data as

above, keeping n = 3, 5 and 7 singular values and m = 2 zeros.

6 I
I
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n Figure 2.3 shows estimates for M = 7, n = 5 and m = 2 but with Gaussian

noise added at 10 dB SNR.

The above figures demonstrate by their similarity that the algorithm is robust

with respect to the effects of noise, choice of order and choice of the number of

I singular values to keep.

Figure 2.4 shows estimated responses for the Concord taken from N = 20 dataI .points in a 6.25-12 GHz range (48-92 MHz for a full-scale target) using M = 10,

n = 7 and m = 4. We have used two data sets here, one taken at an aspect angle of

zero degrees, the other at 20 degrees. The figure clearly shows the relation between

the two estimated responses. We can see that the second large peak has split into

two peaks at 20 degrees, and all the scattering centers are a bit closer to each other,

as a result of the apparent foreshortening of the target in the downrange direction.

For reference, Figure 2.5 gives the result of an IFFT performed on the 18-26 GHz

data, and Figure 2.6 gives a properly scaled picture of the Conrrd.

I 2.3.2 Direct Estimation of the Canonical Scatterer Model

In this section we detail an algorithm that directly estimates the {Ki}, {ri} and

{ti} parameters of equation (2.1). The order of estimation is first the {r,}, then the

{ti} and finally the {!K} parameters.

The {ri} parameters are estimated in the same way as as for the approximate

model in the previous section. We then find the {ti} parameters by applying the

following three step procedure for all scatterers.

1. For the ith scatterer, modulate the sequence {yk} with e 32, thus trans-

lating the ith scatterer to relative range zero.

2. Apply a low-pass filter to the modulated data yk. Note that this is a low-range

filter, not a low-frequency filter. This filtering operation should leave the ith

scatterer as the only component of the filtered data. Note that it is important

that the filter have linear phase for the third step to succeed.

m 3. The filtered data can now be described by

I 11
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n

Yk = Ki(j2-rfk)"

From which it follows that n

Ln y' = LnK, + tLn (j21rfk) (2.11)

where Ln is the main branch of the complex natural logarithm. The param-

eters {fi} can be found from a least squares solution to equation (2.11). and

finding the least squares solution.

Finally, the {K,} can be found using a least squares method in equation (2.1),

using the estimates for {ri} and {ti} found above.

if desired, t''c .stinaates found with the aid of the multi-step procedure above can

be used as an initial guess for a non-linear least squares estimator. The accuracy of

the estimates for simulated data has been sufficient that this has not been necessary

so far, but we anticipate that such refinement may be needed for real data.

I
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3. Exponential Modeling of Fully Polarized Radar Return

The horizontal and vertical radar return from a target illuminated with stepped

frequency circularly polarized radiation can each be modeled a sum of complex

exponentials. The scattering points of the target are thus the poles of these models,

and amplitudes associated with each pole represent the scatterer's horizontal and

vertical return. One approach is to use this modeling on both the horizontal data

and the vertical data independently. This model can then be used to identify the

target.

However, it is reasonable to assume that if a scattering center appears in the

horizontal return then it is also present in the vertical return. Thus when estimat-

ing the poles of the model, both the horizontal and vertical information are used

simultaneously to estimate the ranges of the scattering centers. To make the esti-

mate more resilient to noise we employ Singular Value Decomposition (SVD) on the

associated linear prediction matrix. Also, since scatterers can be expected to cause

peaky responses, poles in the linear prediction model which are not within a certain

distance from the unit circle are eliminated. Finally, we estimate the horizontal and

vertical amplitude characteristics independently using the appropriate polarization

data.

Once the model has been determined, the angle at which the poles appear in the

z-plane represent the downrange location of each of the scatterers. The horizontal

and vertical amplitudes associated with each pole contain the information about

that scatterer's polarization effect on the incident radar wave. These polarizations

are in general elliptical and, along with the scatterer's range, can be used to identify

the target.

3.1 Modeling the Scatterers

Assume that two sets of N data points are generated from M complex exponen-

tials with white Gaussian noise added, where each set represents the horizontal and

vertical return from a left circularly polarized incident wave, Shl and svi respectively.

15



ShI(n) l P + a, ~n) n= 1,.. ,N. (3.1)

Where Pk is the kth common pole, ahk is the horizontal amplitude associated with

that pole, and ark is the vertical amplitude associated with the same pole. The

backward linear prediction equations can then be set up as follows[6][7][8].

Shl( 2 ) Shl( 3 ) ... ShI(L + 1) Shl(1) 3
Sh( 3 )

ShL(N - L + 1) ... ... Sh l ( N) Shl(N - L)

s~t(2) .s~i(3) .. s (L + 1) b s,(1) (3.2)
s ,1(3 ):"

s,,(N - L + 1) ... ... s,,(N) stI(N - L)

or

Sb -s (3.3)

where L is the order of prediction, and b is the coefficient vector of the polynomial I
B(z) given by 3

B(z) =1+ biz - +... + bLz - L (3.4)

Note that both sets of data are used simultaneously to estimate a single set of I
prediction coefficients.

The solution involves forming the matrix [s : S), performing a Singular Value 3
Decomposition (SVD) on it, then truncating all but the first M singular values to

arrive at a better estimate [.: 5]. Next, b is found using the pseudoinverse of S. 3
b = - (3.5)

Now the estimated poles can be determined as:

o, z) i=1,...,L (3.6) 3

16 3
I
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Since scatterers result in peaky responses, those poles which do not lie within a

given annular region about the unit circle can be eliminated from the model. The

following criterion has been found to work well for radar data:

1 IiN < 100 (3.7)

100

We keep only those poles in (3.6) which satisfy (3.7). Once these L' poles have been

determined, the amplitude equations for both the horizontal and vertical compo-

nents can be formed.

iSh(I) ,1(1)

(3.S)

...iP I hUL dL] ShI(N) sI(N)J

or

PA = S (3.9)

Total least squares can now be used to estimate the amplitudes.

= (p!p)) pHS" (3.10)

3.2 Determining Scatterer Locations and Associated Polarizations

Now that we have &hi, ii, and i, for each scatterer i, we can determine its

range i, and its polarization in terms of tilt i,, ellipticity ii, and major axis .4,.

They are given by the following:

t =i (3.11)

i t1 tanan2co &) (3.12)

1 (tan (2j) co\ )
= sin-1  i I (3.13)

2 sin(~),

Ai Jsin (6) sec (i) 3-4A , = (3.14)

1 2tan('.)COB(S.) +1
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where U
tan'(- . (3.15)

and

a n = a ,, - Lh h 

( 3 .1 6 )

El, IahI (3.17) I
k2, =6,ij (3.18)

The ranges of a target's scatterers and their respective polarization characteris-

tics can thus be used to identify the target.

3.3 Simulation Results

The above estimation procedure was applied to data obtained from compact

range measurements of several small aircraft models; in particular, we used scale

models of the 707, 727, 747, DC10, and the Concord. The ESL compact range

was used to measure horizontal transmit with horizontal and vertical receive and

vertical transmit with horizontal and vertical receive, Shh(f), S,h(f) = Shy(f), and

sv (f) respectively. The measurements were made for frequencies f between 1.5 and I
12 GHZ at 50 MHz steps, thus resulting in 211 data points for each polarization.

From this data, Shl(f) and s tj(f) are found using the following transformation:

Sht(f) 1 Shh(f) Sh,(f) J --i (3.19)

so(f) I LISvh(f) S~~(f) V2~
The following simulations were done with N = 80 data points from the upper

half of frequency range. In all cases, the nose on aspect angle data was used.

The models range from about 23 to 43 cm in length, so an unambiguous range

R 75cm is needed to get resolution between the model's individual scatterers. U
Since Af = , where c is the speed of light, for this R, Af = 200Mhz. This

corresponds to every fourth point in the data set. To allow use of all 80 points,

the backward prediction equations were written so as to interleave four sets of 20

18I
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i points cach. The amplitudes associated with each pole similarly used the four sets

of data.

Finally, model order and the number of singular values to keep were chosen as:

L = 10 and M = 5. The results for each plane with no noise added to the data

appear in Figs. 3.1-3.5. Each scatterer is represented by an ellipse which describes

its polarization effect at the appropriate range. The scale is in meters and is for

ellipse location. The ellipse factor of .2 can be used to multiply the range scale to

see ellipse magnitudes. A scale plan view for each plane also appears in order to

match up ellipses with their physical scatterer.

I1
I

I
I
I
i
I
I
I
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Figure 3.1: 707 Scatterers and Polarizations
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Figure 3.2: 727 Scatterers and Polarizations
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Figure 3.3: 747 Scatterers and Polarizations
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Figure 3.4: DC1O Scatterers and Polarizations
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Figure 3.5: Concord Scatterers and Polarizations
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I Noise was then added for SNRs of 1OdB, 5dB, and OdB to the DC10 data. Five

simulations with different noise realizations for each SNR appear in Figures 3.6-

3.8. Since the noise tends to make discrimination of ellipses difficult, a plot of range

vs. the length of the hypotenuse between each ellipse's major and minor axis also

appears in each figure.

2I
I
I
I
U
I,

I
I
I
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Figure 3.6: DC10 Scatterers and Polarizations, SNR of 10dB
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Figure 3.8: DC10 Scatterers and Polarizations, SNR of 0dB
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The simulation results demonstrate that the procedure produces target signa-

tures which are unique and identifiable and that it stands up well in noise, par-

ticularly in finding the existence and range of a scatterer. This is due to the fact

that both sets of data, ShL and sv, are used to determine the poles of the model.

Even at OdB SNR the scattering centers are quite distinguishable, particularly in

the hypotenuse plots. The polarization ellipse for each scatterer, however, is not as3 robust since its components are each derived from half of the data separately. Still,

the scatterer center location makes identification of the target possible in these high

noise situations. The scatterers also appear at downrange locations which corre-

spond with features of the planes such as wings, engine inlets, rudders, etc., which

gives physical significance to the model and helps to justify its use.

I
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4. A Study of The Bispectral Estimates of' Radar Signals And i

Application To Radar Target Identification

4.1 Introduction

This Chapter is concerned with the application of bispectrum estimation to

the analysis of radar signatures. The recent interest in bispectrum estimation is

motivated by the broad area of applications of higher order spectral estimates,

especially the bispectrum. Problems such as phase decoupling, signal nonlinearities

and skewness from Gaussian-like features can be solved and better understood using

bispectrum estimation. The use of higher order spectra is not an alternative for

lower order spectral analysis but rather a complementary process. Many features

embedded in measured data may not appear in lower order spectral analysis or

could be misinterpreted or misread. High order spectra may uniquely identify such

features and present them in a way which leaves less room for misinterpretation.

Radar measurement data contain a wide spectrum of information that corre-

sponds to various scattering mechanisms. In this study an attempt is made to use

bispectral analysis to identify such mechanisms. This attempt is motivated by the i
fact that such mechanisms are often confused using first order spectral analysis.

Moreover, radar targets at certain signal to noise ratio and certain conditions of

azimuth and elevation may have similar lower order spectral responses but different

higher order spectral responses. Thus, the bispectrum can be used to discriminate

among targets that differ in fine details only.

Therefore, the two main reasons for studying bispectrum in radar signature anal-

ysis is to recover complex scattering features and to discriminate among targets that

differ in fine details rather than major features. Also, in this study we looked at

bispectral responses for frequency dispersive scatterers and found some interesting

advantages of the bispectrum under these conditions. Moreover, due to the correla-

tion involved in bispectrum estimation, the behavior of bispectral responses under

conditions of high noise is relatively less sensitive to noise corruption than lower

order spectral responses. Finally an attempt is made to classify radar targets based i
on the corresponding bispectral responses.
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4.2 Problem Futiatlation: Birange Profile Theor-y

I Radar scattering from an object is often measured as amplitude and phase at a

set of evenly spaced frequencies. This permits a transformation to the time domain

and thus the range domain by taking an inverse Fourier transform of the data. The

result is called the radar target impulse response [9]. In general there is a one to one

relationship between specific scattering mechanisms and the time such mechanisms

appear in the impulse response. One of the difficulties that this type of analysis has

is that complex targets often have multiple interactions. The result is that many of

the terms in the impulse response are related to the interactions rather than due to

the result of simple subcomponent scattering. Many of these multiple interaction

mechanisms can be identified as such by the application of the bispectrum to the

radar scattering data.

Also, this study indicates that the individual target scattering mechanisms are

more easily observed using the bispectrum under conditions of high noise or target

dispersive effects. It will be shown that these bispectral responses constitute robust

features which may be used in radar target identification schemes.

The radar scattering from a complex target can be effectively modeled as a

sequence of discrete scatterers. With this model each element of the set of complex

radar scattering data

Sp(f3) Apexp(-j27rR f,/c). (4.1)

whereI
Sp(.fj) = pthscattering coefficient at

j t h frequency

AP = amplitude of pth scattering

I coefficient

RP = line of sight range between

scatterers and radar zero phase

(& time) reference plane.

29I
I



fj = Ijth radar carrier frequency

c = speed of light. I
This can be usefully converted to scalar form by simply taking the real part of the

scattering value.

= Apcos(2rRpfj/c) (4.2)

Note that when data are represented in this form for the scattering from a

particular single point scatterer at a particular range from the radar phase zero

reference plane (which may be located near or on the target), a sinusoidal variation

in the data as a function of frequency results. The amplitude of the sinusoid is

proportional to the scattering coefficient of the scatterer, and the periodicity of the

sinusoidal variation (as a function of radar carrier frequency ) of the real part of

the the scattered signal is proportional to the line of sight distance of the scatterer

to the zero phase reference plane. If the scatteres do not interact, then the total

received signal will have the form

,(fj) = ,p Apcos(2rRpfj/c) (4.3)

Note that computation of the spectrum of St will yield values of A for each Rv.

Note on the other hand that if the scatterers interact (multiple interaction), then

a signal scattered from the latter part of a particular target will be influenced (or

modulated) by interaction with components of the target closer to the radar. This

interaction with other parts of the radar target prior to scattering from a particular

object on the radar target results in modulation-like effects in the range domain

profile which can be uniquely identified when the bispectral estimation process is

applied to S,.

The definition of the bispectrum is the two dimensional Fourier transform of the

third moment sequence. In this study the bispectrum is a birange profile obtained

by computing a two dimensional Fourier transform of the third order autocorrelation

function which is function of frequencies f,, f2 in the two dimensional frequency
dohlain.
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I Rs, (fl, f2) = EjSt(fj)9t(fj + fj)St(fj +- f2)1 (4.4)

Bs,(R,,R 2 ) = ZZ Rs,(f,f2) (4.5)
fi 12

exp(-j2r/c[Rif1 + R 2f 2I)I
where E{.} stands for the expected value and R 8,(f 1,f 2 ) is the third moment se-

quence of S(t). The birange is denoted by B,,(RI, R 2) where R 1 , R2 belong to the

two dimensional down range domain.

The bispectral estimates in this study are computed using the indirect classical

method which is based on computing an estimate of the third moment sequence.

Windowing can also applied to the estimates of the autocorrelation values. In this

study the optimum window (minimum bispectrum bias supremum) [10,11] is used.

The above definition can be used as an indirect way to estimate the bispectrum

I but to get some kind of a physical insight of what the bispectrum really means it

is better to use the following which is considered as a direct way of estimating the

bispectrum.

1N fy(r) = 1 0 exp(+j27r ) (4.6)

B,,(ri,r2) = y(ri)y(r2)y*(ri + r 2) (4.7)

where y(r) is the impulse response and Bs,(R,R 2) is the direct estimate of the

birange and #l is a constant (/3 (T)2. where f, is the sampling frequency of the

radar frequency data. Thus, if y(r) is the impulse response of the radar backscatter

then the birange Bs,(RI, R 2) is nonzero only when y(rl), y(r 2), and y(r, + r2) are

not equal to zero. This is mostly the case when we have an interaction term axrong

different scatterers. Notice that b(rl, rj) = 1y 2(r)y(2r1 ) which indicates that there

exist scatterers at r, and 2r, respectively. Also, it is important to notice that;

b(r1 , 0) = y(rl)y(0)y(r 1 ) (4.8)

I
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which means that for the bispectrum to exist at either time (range) axis we need to I
have a scatterer at r = 0 then the r, axis represents the impulse response, similarly

for the other axis. Thus if a scatterer exists at r = 0 then the bispectrum at the r I
axis represents the impulse response.

An expression for the third moment sequence of complex data can be obtained

from the direct method as follows;

R(,i. ,) =E{Sf)S(f + rn)S(f ± n)) (4.9)

wliere

R(rn,n) - R(n. 7n) (4.10)

Thus the only symmetry property for the bispectrum in this case is

Bs,(R,R 2 ) = Bs,(R 2, Ri) (4.11)

Moreover, for complex data we can use more than one form of bispectrum as sug-

gested by Brillinger and Rosenblatt (12] and that is by placing the conjugate at

different combinations of S(f). However, the above definition is most appropriate

for interpretation purposes. Also, the real part of the radar data could be used only I
to compute the bispectrum with little loss of information. I
4.3 Classical Bispectrum Estimation Algorithms

Classical methods for bispectral estimation were used in this study. High res-

ohlution technique that involve ARMA modeling algorithms may be used also to

oi )tain bispectral estimates. Classical bispectral estimators, often called conven-

tional estimators are divided into two categories- Indirect methods that follow the

(lefinition of the bispectrum as the two dimensional Fourier transform of the third I
order moment sequence, and Direct methods similar to the periodogram estimate

of the spectral density.

I
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4.3.1 Indirect Method

Let {X(1),X(2),. . .,X(N)} be the frequency data set. Then the estimate of

the third moment sequence is

1 2
I R(rn, n) = N X(i)X(i + m)X(i + n) (4.12)

where s, = max (0, -m, -n) and S2 = min(N- 1,N- 1 -m,N- 1 -n). Then

the estimate of the bispectrum B(R1 , R 2) as a function of range R is generated as:

* L L
B(r,,r 2 ) = E i?(mn)W(mn)exp (-j4r/c(rmn+r2 n) (4.13)

m=-L n=-L

where L < N - 1 and W(m, n) is a two dimensional window function. The optimum

window is used in this study and it can be generated from a one dimensional window

* as:

W(m,n) = d(m)d(n)d(n - m) (4.14)
1 7rm IM rn 'lrm\

d(m) = -1sin- +I1- Lcos-, Imn<L
7r L\L/\L

= 0, jrnl> L (4.15)

The frequency and time domain responses of the two dimensional window are shown

in Figures 4.1-4.2. Notice that the optimum window has a wide main lobe and low

sidelobes.I
4.3.2 Direct Method

I Compute the impulse response Y(r):
1 N-1

Y(r) = - E X(k)exp(-j47rkr/cN) (4.16)

A Hanning window d(m) may be applied to the frequency samples

d(m) = 1(1 + cos( 2 7r ( m  -(Y- 1)/2) (4.17)
2 N-i1

then the bispectrum can be computed over the triangle 0 < r, r 2, r, + r2 < f8 /2

where f. is the sampling frequency.
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B(ri, r2) = Ky(rl)y(r 2)y*(ri + r2) (4.18) U
where K is constant and depends on the spacing between frequency samples (K =

A') f2 is the sampling frequency of the data.

For sufficiently large number of data points, both methods provide unbiased es-

timates. In general classical methods have high variance and the estimates obtained

are not usually smooth. The advantage of using classical techniques is the fact that

fast computations algorithms such as the FFT are available.

4.4 Blade-Sphere Example I
Consider a blade of width r1 - r0 and a sphere at a distance r 2 - r, from the

trailing edge of the blade. The zero reference is set at a distance r0 from the leading

edge of the blade (see Figure 4.3). It can be shown that if one considers four ray

paths the backscattered signal is;

I
St(fj) = A 1 +A 2 exp(-j27rrL-) (4.19)CI

+A 3 exp (-j27rr 2
f j )
C

+A 4 exp (-j27r(rl + r 2 - ro)L)
C

assuming that the amplitudes A 1, A 2, A 3, and A 4 are frequency independent. The

corresponding amplitude and phase of this structure are shown in Figure 4.4. The

impulse response of the blade and sphere target as computed using the inverse

Fourier transform (with a Hanning window over a frequency band from 1.5 GHz I
to 12 GHz) is shown in Figure 4.5. Note the one to one relationship for the first

three responses with the geometry of the target. The fourth response, however, is an

interaction term and there is no single discrete target component which corresponds

to it.

Figure 4.6 shows the bispectral response of the backscatter from the blade-sphere

combination without using a window. The bispectral response of the windowed third

moment sequence is shown in Figure 4.7. In these figures, ro = 0 (zero reference at
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U leading edge of the blade). Note the response at (r, = 1.6meters, r 2 = 2.4meters)

which is due to interaction between the trailing edge of the blade and the sphere

and is represented by the term exp (-j2r(ri + r2 - ro)f-). We can also notice the

twelve symmetry regions of the bispectrum.

If the value of r0 is increased to 1 meter, the bispectral response shown in Figure

4.8 results. Note that all of the response terms have moved along the associated

diagonals, but the particular scattering and interaction terms are still observable.

A three dimensional display of the bispectral response is shown in Figure 4.9.I
4.5 Bispectral Response of Noisy Data

I If zero mean white Gaussian noise is added to the raw data, the resulting impulse

response and bispectral response are shown in Figures 4.10 and 4.11 respectively.

I Note that the detectability of the target scattering terms is greatly reduced in the

impulse response, and noise components in the time domain can be misinterpreted

as discrete scatterers. This problem is less effective in the bispectrum case where

discrete scatterers and interaction terms can still be identified under the same noise

conditions used in the impulse response. This is due to the fact that in the bispec-

trum case the noise components at different frequencies are uncorrelated.

U 4.5.1 Mean Square Error

Consider the measured observation y(f) at frequency f. Assume that the noisy

data is y(f) = x(f) + nf where nf is a Gaussian distributed random variable. Also,

assume that the dat.a are wide sense stationary. The frequency bandwidth is fh - f,

where f, > 0 Hz.

The third order autocorrelation function of the measured noisy data is;

Ry(f 1 , f2) = E{y(f)y(f + fi)y(f + f2)} (4.20)

I then

R,' f 1 , f2) = E{x(f)x(f + fl)x(f + f 2)

+ x(f)nf+fnf+f2 + x(f + fl)nfnf+fh
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+ x(f + f 2)nfn,+ -4- x(f)x(f ± fl)nf+h

+ x(f)x(f + f2)nf+f + x(f + fl)x(f + f2)nf

+ nnf+flnf+f2 (4.21)

therefore

R,(f,f 2) = Rx(fl, f2) + 2{R.(l)+ R,(f2) + R.(f,- f2)1 + 3R.(f1,f2)(4.22)

However, for a Gaussian noise 0 = 0 then

Ry(f,f 2) = Rx(fi,f2) + a2±{S(fl) + 6(f2 ) + 6(f - f2)) (4.23) I
where a2 is the noise power.

The second order autocorrelation is given as

R (F) = E{y(f)y(f + F)} (4.24) I
= E{(x(f) + nf)(x(f + F) + nf+F)}

= RX(F) + R (F)

= Rx(F) + 0 2b(F)

Consider the following as an error measure for estimating the impulse response for

noisy targets;

El = E{ Ihx(t) - h (t)12dt} (4.25)

where hy(t) and h,(t) represent the impulse response for noisy and noiseless data I
respectively and E{.} stands for the expected value. Then E can be written as ; I

EI = E{l iHx(f) - HY(f)12df} (4.26)

using Parseval's theorem. then E 1 is equal to; I
EI= El In(f ) Idf}1 (4.27)

EI = 2a 2(fh - fl)

I
I
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If the spectral density is computed then the error measure is;

Es = jIS.(t) - S,(t)l2dt

*= i &r2(f) -2d

= 0I R(f) 
- Rd(f)12df

= 0

Notice that in this case the mean-square error is not dependent on the bandwidth.

Consider the following as an error measure for bispectrum of noisy signals;

EB = f/JJft2 JB (t,,t 2 ) - By(t,t 2)12dtidt2  (4.28)

where B (tl, t 2), Bv(ti, t2) are the bispectrum for ideal noiseless data and noisy data

respectively. Then using Parseval's theorem in two dimensions EB can be written

as;

EB -- 1f2 JR.(f1 , f 2 ) - R(flf 2) 2df (4.29)

Then using equation (4)

EB = U2±fj J i 1(fl) + b(f2) + b(f, - f 2)12dfldf2  (4.30)

= 2a2 2 (2 + V2)(fh- fl) (4.31)

Therefore:

2+,/5
EB = fh-f+V (4.32)

Therefore the mean square error is directly dependent on the frequency band-

width in the impulse response case as well as the bispectral response. However, in

the bispectrum case a new factor is included that depends on the signal itself.
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4.6 Bispectral Response For Dispersive Scatterers

The effect of dispersion in the data is shown in Figures 4.12 and 4.13. Disper- I
sion is the result of scattering from a subcomponent of the radar target where the

scatterer behavior varies as a function of frequency. In this case, the behavior is

modeled as follows.

Ai(fj) = Ai(1 + o, exp (-kfj) cos(Ofj)) (4.33)

where m

Ai(fj) = is the frequency dependent amplitude of the backscatter coefficient

from the Ith scatterer. and

a, k, and /3 are constants.

In this study, a = 0.6 and k = 0.01, and i 207r.

These figures show that the effect of dispersion is not critical to the bispectrum

response.

4.6.1 Single Edge Dispersion m

The above form of dispersion effects the amplitude of the response only. In

general dispersion effects the amplitude and the phase of the radar back-scatter.

This type of dispersion results in energy loss along the physical target thus effectively

moving the scattering centers in the down range profile.

In this section we study the case where only one edge is dispersive in amplitude

and phase. This is rather a realistic model and matches to a certain extent scattering

from a rocket where the front end scatterer (the nose) is highly dispersive. In this

case the amplitude of the returned signal can be modeled as: I
Ai(fj) = A 2{(1 + aexp(-kfj)cos(3fj)}exp(jp/f) (4.34)

where p depends on the scatterer. This model indicates that scattering takes place

near the point of the nose for high frequency components and further away from

that point at low frequencies. Figures 4.14-4.15 show the impulse response and the

I
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bispectral response of this type of scattering. As expected the scatterers location

will be displaced and the response will be smeared. The bispectral response shows a

similar type of behavior except that the energy loss phenomenon and the frequency

dependent scattering is recognizable. Notice that the interaction term response

h±±uCaLo i-,,dt bcatt,,:i!ig , placc uuit.,.hcie bu xeeii the nose and the second

scatterer.

4.7 Bispectral Responses for Canonical Aircraft

Experimental data for scattering from a 6 Inches canonical aircraft for frequen-

cies between 1 - 18 GHz were used in determining the bispectral responses from

various components of the aircraft. Back-scattering from wing only, fuselage, fuse-

lage and stabilizer, and complete aircraft parts were measured at the Ohio State

ElectroScience laboratory [13].

Figures 4.16-4.19 show the bispectral response for such models corresponding to

different parts of the aircraft. In the case where the scattering from the fuselage

only is measured no considerable interaction term is observed. The addition of the

stabilizer introduces some interactions. In the case where only the wing is present, it

is shown that many high order scattering mechanisms take place along the wing area.

The bispectral response for the complete aircraft is dominated by the interactions

that take place in the wing area. These figures will help us understand bispectral

responses from real targets where many complicated scattering mechanisms are

involved.

4.8 Bispectral Responses for Commercial Aircraft

The compact radar cross section measurement range at the Ohio State Univer-

sity ElectroScience Laboratory[13] was used to make measurements of the radar

scattering of a set of 5 scale models of commercial transport aircraft (see Figure

4.20). The measurements were calibrated so that absolute values of amplitude (in

square centimeters) and phase (in degrees from an absolute reference plane) were

available over the band of frequencies from 1.5 to 12.0 GHz. This corresponds to

frequencies in the HF band for full scale aircraft and means that the targets are in
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the resonance region of the radar (ie: The wavelength is on the order of the target
siz -)[131.

Using the techniques described above (including the use of the optimum win-

(low function), the bispectrum of each radar target signature was computed. The

results are 6iio±,,, ii Figutr 4.21 to 4.25. Nott that tLh diffc:;_en rakrax targets yield

distinctly different bispectral responses. It can be shown that this implies that such

responses are likely candidates as features for radar target identification.

Since each radar target is being measured in the resonance region (as mentioned

above), it can be shown that the target signature is relatively insensitive to changes

in aspect angle. (especially the impulse response signature.) The result of taking

the bispectral response for the Boeing 707 as the aspect angle varies from 10 to 30

degrees is shown in Figures 4.26-4.28. It can be seen that the bispectral response is

rather stable between each 10 degree angle change. Figure 4.29 shows the bispectral

response of a 747 at 0 degrees azimuth and -5 dB signal to noise ratio (SNR). In

the next section bispectral images (as such) are used in classifying different targets.

4.9 Classification Methods

In this section we describe how to classify radar targets based on their bispectral

response using two dimensional cross-correlation. The concept of the "catalog" of

data will be used with a bispectral feature space. In this technique a catalogue of

noise free bispectral responses are used to determine the identity of a target from

which a noisy bispectrum is available. It is known (in this study) that the target

corresponds to one of the entries in the catalogue. First, the goal to find a catalogue

bispectral response that most closely matches the bispectral response Bj(rl, r 2) of
an unknown target. That is to minimize

mijj Ij(Bi(ri, r2 ) - B/ri, r 2 ))2dridr2  (4.35)
mi + fd (4.36)

min{J B2(rjr 2)drjdr2 + B 2 (rl,r 2)drIdr2  (4.36)

-JB(ri, r2 )B(ri, r2 )dridr2 l (4.37)
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where Bi(ri, r2) and Bj(rl, r 2) are the bispectral responses Uf catalogue target i and

unknown target j. This requires maximizing

/12 B,(r1 ,r 2)Bj(ri,r2)drldr2  (4.38)

Irid *I;- rn -)e donp by qhiftirng R(:,r2 ) over all the domain of R/.(rl, r ) This is

equivalent to maximizing

f(, f,,, Bi(ri, r2)Bj(r, + R 1 , r2 + R 2)drldr2  (4.39)

[fr fL2 lBj(r, + R1,r 2 + R 2)2dridr2]2 [f,, fr, IJB(ri, r 2 )12dridr I

where pij(Rl, R2) is the normalized cross correlation coefficient of catalogue target

bispectral response i = 1, 2,..., 5 and test target response j. Notice that the factor

in the denominator depends on R 1, R 2 and this is in order to compute a normalized

crosscorrelation.

4.9.1 Indirect method

Using Fourier transform identities and Parsevals theorem the cross correlation

can be written as

Pij(R 1 , R2) I2FT{Ri(fl, f 2)R;-(f 1 , f2)} (4.40)

[ff, ff2 IRi(fl,f 2 Idf 2 [f, I 1R3(fl, f 2 )12 df 1df421
where I2FT stands for the inverse two dimensional Fourier transform and R*(fl, f2)

is the conjugate of Rj(fl, f 2). For the discrete frequency case the cross correlation

is

pij(RiR2)= I2FFT{Ri(fl, f2)R;(fl, f2)} (4.41)

[E Zf ~fl 2Rjff)2

where I2FFt is the inverse two dimensional fast Fourier transform. The test target

is classified to a catalogue class c if

pcj(R 1,R2) =max{max pij(R 1, R2)} i = 1,...,5. (4.42)
i R1,R 2
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4.9.2 Direct method I
If the direct method for estimating the birange profile for radar targets was used

then the classification would follow as

" Compute the birange estimate of both catalogue target i and test target j as

B,(ri, r 2) = yi(r,)yj(r 2)yj(ri + r 2) (4.43)

over the triangle A : ri < r2, ri+r2 < cir, and r 2 > 0. where is a constant

and y(r) is the impulse response,

1 N-1yi(r) = - 1 Xj(n)exp(j27rnr/N) (4.44)

n=0

and X(n) is the measured frequency data for target i. 3
" Compute the crosscorrelation , ,R2) as

Pj(Ri, R 2 )Z Bi(ri, r 2)Bj(r , + R1 , r2 + R2) (4.45)
p(1R E12 jBi(ri, r2)12] 2 [E, E,, Bj(r, + R, r2 + R 2)I12] I

where R 1,R 2 E A .

" The decision rule is;

pj(R1,R2) =max{maxpij(RiR 2)} i=,... 5. (4.46) Ii R1 ,R2

4.9.3 Comparison

The first method does not require bispectrum estimation but still requires esti-

mates of third order autocorrelation, while the second method requires computation I
of two dimensional crosscorrelation but no third order autocorrelation. Also, the

first method involves a two dimensional window, while second method involves a

bispectral estimate of Hanning window. Another important difference is that the

first method requires computation of third order autocorrelation over all birange

domain while second method makes use of the triangular symmetry. Moreover,
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U the first method requires third order correlation over all R 1, R 2, two dimensional

Fourier transform. The, second method requires one dimensional Fourier transform,

birange estimate over a triangle A, and crosscorrelation estimate of biranges over

. In order to compute a normalized cross correlation coefficient we need to com-

pute the normalizing factor VR 1, R 2 E A. This is a major disadvantage for the3 second method. Also, the decision criteria for the first method is over all R 1, R 2

while the other method is over one triangle(1/8) of Ri, R 2 domain.U
4.9.4 Classification Algorithm

It has been shown that both classical methods in bispectrum estimation require

many computations if used for radar target identification. An algorithm that com-

bines both approaches can be implemented as follows;

1) Compute the Impulse response of the test target j using discrete Fourier trans-

form which can be implemented as Fast Fourier transform.

N-1
xj(r) = Xj-> X(f)exD 74rfr/c ------------- FFT (4.47)

J J=O
2) Compute the third order autocorrelation estimate

1H= R 3 (f 1 , f 2 ) = Z xj(rl)xj(r2)xj(r, + r2 ) exp j4ir(firi + f 2r 2 )/c- - -2FFTt- 48)N'rl r2

3) Compute the cross correlation coefficient as

I2FFT{Ri(fl, f 2)R*(fi, f 2)}

p1 (RR) ~ ~ R~ f1~ . - 2FFT (4.49)

3 4) The test target is classified to a catalogue class c if

pcj(R 1 , R 2 ) = maxfmax pi,(RI, R 2)} i = 1,... 5. (4.50)i "tll,R2

In the above algorithm one one-dimersional FFT and two two-dimensional FFt

are needed in order to compute the normalized cross correlation coefficient. Thus,

the above algorithm is most suitable for classification of large arrays of data in the
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frequency domain where the computation time saved due to the parallel computa- I
tion feature of thc above algorithm becomes considerably large.

4.10 Radar Target Identification Example

A........ aio s-,,,, based on the Indirect Method was performed to eval-

uate the performance of the concepts discussed in this chapter where the bispectral

response was used as a feature for characterizing radar targets. The data base used

in this example has been used before in radar target identification studies [14,15,16].

The data base consists mainly of experimental measurements in the frequency band

from 1 - 12 GHz of scale models of commercial transport aircraft. A photo with

corresponding names of these aircraft are shown in Figure 4.20. Moreover, the scale I
data corresponds to measurements of the radar cross section (RCS) of full scale

aircraft in the HF/VHF frequency band.

The classification algorithm is shown in Figure 4.30. In this algorithm Gaussian

distributed noise was added to the raw data, (complex radar cross section mea-

surements RCS versus frequency). An estimate of the bispectral response of the

resulting noisy data is then computed using the indirect method. A two dimen- -
sional cross-correlation was performed between the noisy bispectral response and

the catalogue ideal bispectral response. A decision is made in favor of the catalogue

with the laigost cross ,orrelation. The same procedure is repeated for different

test targets. Figure 4.31 shows the actual algorithm used to evaluate the classi-

fication performance technique shown in Figure 4.30. In this algorithm the third

moment sequence of both noise free catalog data noisy data (additive noise) are

computed. The normalized inverse two dimensional fast Fourier transform of the

product of the two third order moment sequences is then computed. Decision is

made in favor of the class with the largest cross correlation with the unknown noisy 3
target. Decision statistics for each target are computed at each noise level and total

statistics of classification error are computed for all targets at a certain noise level.

One hundred experiments were performed for each test target (total of 500 experi-

ments). The entire test is repeated for different noise levels. Finally the percentage

of misclassification is plotted versus signal to noise ratio.
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Figure 4.32 shows the classification performance for five commercial aircraft

where complete azimuth information is assumed to be known. This performance

curve shows that bispectral estimates can be used effectively in radar target identi-

fication. Notice that the percentage of misclassification is zero for a signal to noise

.mi. higher th~an 0 dB.

The above example shows that reliable target identification can be achieved

using the bispectral response as a feature source. The classification performance

can be further improved by developing a feature selection algorithm that can be

Il applied to the bispectral responses of both catalogue and unknown test targets.

Furthermore, the classification approach used in this example is a non-parametric

3 technique that requires no a priori information about the parametric distribution

of the measured radar data.U
4.11 Conclusions

I in this chapter the application of bispectrum estimation to radar signature anal-

ysis is investigated. It has been demonstrated that a bispectral response of radar

backscatter signals has the advantage of identifying multiple interactions for com-

plex radar targets. This leads to the conclusion that higher order interactions of

radar backscatter may be identified using higher order spectral analysis. Such high

order interactions that are relatively smaller in the impulse response because of their

3 amplitudes may be recovered using high orders of spectral analysis. Therefore, the

bispectrum and other high order spectral analysis methods may be considered as

potential radar feature extraction techniques that may be effectively used jointly

with the impulse response in radar target identification. It is shown that bispectral

responses of radar backscattcr signals are relatively robust under conditions of high

noise and frequency dispersion. Finally, it has been shown that radar targets can be

successfully identified at zero dB signal to noise ratio using a simple classification

3 algorithm such as cross correlation.
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Figure 4.1: Optimum window (minimum 1)ias supremum) in frequency domain. U
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Figure 4.2: Optimum window (minimum bias supremum) in range domain.
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Figure 4.16: Bispectral response for fuselage at 0 degrees azimuth, 0 degrees eleva-
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Figure 4.17: Bispectral response for fuselage and stabilizer at 0 degrees azimulth. 0

dtegrees elevation.I

62



50. 140.20 320. 410. 9.

Win only

-3I2 1.1 .3
Tirm[nansecs

Fiue41:Iseta epnefrwn a ere zmt,0dgeseeain

*6



bispectrum

20 40. 600. 800. 1000. 1200. 140.I
Fuselage, Wing, Stab., Tail

0 elvtin

64I



I
I
I
I
i
I
I
I

I
I
I

Figure 4.20: Scaled drawings for aircraft used in experimental study
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Figure 4.25: Bispectral response for 707 at 0 degrees azimuth, 0 degrees elevation.
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Figure 4.26: Bispectral response for 707 at 10 degrees azimuth, 0 degres elevation.
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5. Investigations of Structural Pattern Recognition Methods for

Radar Target Identification 3

5.1 Introduction

One of the more troublesome aspects of the level-crossing based preprocessing

methods of [17] is the determination of conditional string probabilities by the his-

togram method. Convergence of the histograms as well as the issue of %nclassifiable

strings unnecessarily complicates the investigation of inference of more sophisti-

cated language theoretic classifiers and the computation of the resulting classifiers

performance. To circumvent these difficulties, analytical methods for determination

of unsqueezed octant crossing and single level crossing have been developed.

Currently, the algorithms are being used to determine misclassification prob-

abilities by Monte-Carlo simulation. This method potentially allows for shorter

execution time than the histogram methods of likelihood function estimation used

previously, since conditional string probabilities need only be calculated for those

strings which occur during the Monte-Carlo test. Furthermore, the problem of

un-classifiable strings, as well as the problems related to the matched-noise phe-

nomenon are alleviated. The algorithms which are employed, their current and

possible future uses are described in the following section.

While extremely compact, the non-deterministic form of the a syntactic classifier

derived in [17] is not particularly revealing in terms of analyzing decision rules 3
induced by such a classifier. In order to gain insight into the resulting decision rules,

programs have been developed which convert these classifiers to a deterministic 3
form. The deterministic form resembles a tree classifi- As such, it reveals the

relative discriminating power of particular symbol. -strings. This notion has 3
yet to be formalized.

The deterministic form of the classifier may be used as an analysis tool to help

understand how the grammatical inference methods are able to extend decision

rules generated by likelihood function estimation. Recall that when likelihood func-

tions estimated by the histogram method are used for decision rule generation (i.e. I
decisions do not exist for every possible symbolic representation) the grammati-

78 I
U



I

cal inference method allows the decision regions to expand into areas of unknown

classification to reduce computational complexity (see [17]). Inspection of the

deterministic form of the classifier reveals the extent to which overlapping of the

decision regions induced by the grammatical inference method takes place. When

coupled with the analytical method of likelihood function estimation, this form of

the classifler will be able to quantify the gains realized by the expanded classifier.

79

I
I



Probability overlap between catalog elements 1 and 2

Pr P(S Ci )
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t
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Figure 5.1: Conditional Probability Overlaps

5.2 Analytical Methods for Likelihood Function Determination m

The basic algorithm is designed to calculate the conditional string probability I
for each element of a catalog to within a given tolerance. The string probability

calculation procedures use this specified tolerance to determine allowable error for

each calculation in the process. These individual errors are set so that the total

string probability estimate is within the specified tolerance. The underlying pur-

pose for calculation of the conditional string probabilities is to make a decision as

to which catalog element the string was generated under. The maximum likelihood

estimate of the generating catalog element is determined by choosing the maximun

of the conditional probabilities. A decision can only be made if the band about the

naximt, n conditional probability (the width determined by the given conditional

probability tolerance) does not overlap any other bands (see Figure 5.1). Since little

is known about a given conditional string probability before estimation, the total

string probability tolerance is first set to some nominal value and the conditional

string probabilities are determined. If the situation exists, where the maximum m

conditional probability overlaps some other conditional range of probabilities then
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the conditional probabilities are re-calculated with ap appropriately decreased tol-3 t'rance. In this way, the conditional string probability estimation algorithms may

1,, used to make a Bayesian decision about catalog elements.

Clearly, the string probability calculation algorithms may be used for Monte-

('Irlo test since it allows for a hard decision of any given string. However, these

al-rithms will allow for grammatical inference with supervision, since the string

probability routines may act as a teacher. Furthermore, since the conditional proba-

1)ilities are available on demand, investigation of information content of the symbolic

Srepresentation is allowed for as well as investigation of the precise influence of noise

oi the likelihood functions.

5.2.1 Conditional String Probability Estimation

3 Each of the probability calculation algorithms involve further layers of error-

control iteration beyond the decision process described in the section 5.2. This3 sub-section describes the first two of these layers. They are common to both the

octant crossing and single level crossing schemes and, with modification, would

apply to any symbol assignment scheme with adaptive thresholds.

The first layer of error control iteration, accounts for variations in the magnitude

threshold by approximating it with a normal random variable. The thresholds of

the double level crossing are dependent upon the maximum and the minimum of

observed measurements and, as such, involve order statistics of independent Rician

I random variables.

The second layer of error control iteration involves the relation between individ-

ial symbol error and total string error. The technique developed in this section is

valid for any symbol assignment scheme in which each symbol corresponds to an

3 independent event. The individual symbol probability estimation procedures are

described in the following section.

U Magnitude Threshold as a Random Variable

3 By the definition of the single level crossing and octant crossing schemes, the

magnitude threshold used in these schemes is the sum of the individual magnitudes
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Equation (5.1). Since the threshold used for string generation is a function of the

o)servation, it too is a random variable. Thus conditional string probabilities are

calculated under the assumption of a fixed threshold and integrated with respect

to the threshold density to determine the probability of a given string conditioned

only oil catalog element. I
1 N

T Z I(ai) (5.1)

In equation (5.1), T is the magnitude threshold N represents the number of

measurements taken and ai is the ith noisy measurement.

P(S I C') = P(S I T = t,Cj)P(T = t I Ci)dt (5.2)

The individual magnitudes of the observation vector are Rician distributed ran-

dom variables, by assumption of independent Gaussian noise. Equation (5.1) in- I
dicates that the magnitude threshold is a weighted sum of these Rician random

variables. Thus, by the central limit theorem, it is reasonable to assume that the 3
magnitude threshold for both schemes is, conditionally, a Gaussian distributed ran-

dor variable. Furthermore, the central limit theorem indicates the statistics of the 3
magnitude threshold. 2!

P(T = 1 e+; t)2 (5.3) 1
And so Equation (5.2) becomes:

P(SI C,) -P& _P(S IT t,C,)e dt (5.4)

In equations (5.3) and (5.4) fit i- the threshold mean and &2 is the threshold variance. I
ihey are calculated from components of the measurement vector mean ,E [zr], and

sccond moment, E Zi]2 .

-E [zi] (5.5
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U 2 (EK]1 -EN 2  (5.6)N t=

The components of the measurement vectors' mean and second moment are, in

turn functions the magnitude of components of the noiseless measurement vectors,
P2

p.,. and the per-channel noise variance, a' (the quantity qj is the ratio -,-).

£2,E [zi'j = / e2 a (+q I +qiI1 (5.7)
I(, + (5.s

The Gaussian Quadrature method is used to approximate the ir,-?gral of Equa-

tion (5.2) with a sum (see Reference [18]).

P(SICi) 1-ZHkP(SIT = xk, C)P(T = XkiC) (5.9)
k=1

3 This method chooses the abscissas (Xk) and the weights (Hk) in such a way as to

minimize the error between the integral and the sum; exact answers are obtained for3 polynomials of degree m - 1 or less. Gaussian Quadrature with Hermite weighting

is used to approximate integrals with weighting functions of the form w(t) = c-2.

Thus a change of variable is made to put Equation (5.4) into such a form.

x t t -it
x -=h(t) - (5.10)Oat

t h- 1 (x) = 5 tx + t (5.11)

And so Equation (5.4) becomes:

P(S I C,) 7J P(S IT h-(x),C )&-xdx (5.12)

Gaussian Quadrature with Hermite weighting may now be used to approximate

the integral of Equation (5.12):

P(S C,) . kP(S I T = h-'(i k), C) (5.13)
k=8
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The error associated with an estimate using Gauss-Hermite Quadrature is given

in Reference [18] as:

E -= / m! f [tI,t I, t2, t2,....,3tm t,,) l (5.14)

To obtain an estimate of this error, the divided difference (f [tl, ti, t 2 , t 2,..., tin, tin, 1])

of the string probability function is obtained by evaluating this function at 21n + 1

points instead of m points as required by the Gauss-Hermite Quadrature rule. This

procedure more than doubles the computation time required to calculate the proba-

bility of a given string, however, this is necessary to control the error and arrive at a

valid decision. Once this error is obtained, it is compared with the designated error

of the string probability function and the total error is taken to be the maximum 3
of the two. I
String Probability Error vs Symbol Probability Error

Both algorithms build up total string probabilities from individual symbol prob- 3
abilities. Since the noise corruption is assumed independent between measurements,

any given string probability is the product of the constituent symbol probabilities. 3
Thus, in the absence of estimation errors the true total string probability, P(S), is

related to the true symbol probabilities, P(ai) by: 3
N

P( S) = II P(ai) (5.15)
i=1 

I

However, exact values of the symbol probabilities are not available. Thus if

we define the total string absolute error to be E and the ith symbol probability 3
absolute error to be ei then equation (5.15) becomes:

P(S) + E = +(5.1) I
i=I

As stated above, total string probabilities are calculated to within a given tolerance. 3
In order to guarantee that relative error on the total string probability is below some

maximum (Erelmax), a maximum relative error for symbol probability estimation

is supplied to symbol probability estimation routines. The defining property of the

relative maximum symbol probability error is:
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P( _) Erelmax, V I <Z<N (5.17)

This maximum relative error for the symbol probabilities is calculated from the

designated string probability relative error by:

frelmax /Erelmax + 1 - 1 (5.18)

This guarantees that the actual total string relative error will be less than the

designated maximum since:

N N-I N-2

E = P(ai) + 1 P(ai)u- + j P(ai)Eu-lP(ai) ±+-" (5.19)
2=1 i=1i=

N

+ I J- P(S)

E (1P()) [ W (= n E, + E I (P'E')) (P ) (3.20)

N-2 N-I N Ei Ej Ek +.
+ Z: Z: (2) (a) (ak) ±

i=1 j=1+1 k=j+l

E N (~ EJ N-1 N 21)/E

SI i + 1 ii 1

PC )1 \i~ 2 ) =1 1=i+1l~zI \)

i= j=i+l k=j+l

+ I-I )

E N . N- N Ej (5.22)
PS) P(a) i=1 =i+l P(a) P(a)

N-2 N-i N I- k
+ E :

=1 k=j+ P(a) P(a) P(ak)

i=I 6

8N

P(ai)
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E_ (N '(N 62 Nema ± (Aa (5.23
(- 1 JErelmax 2 2 elmax +  r elmax

E + ( Z) E~lNa
+ y N rehnax

P(S) <_ (1 ± frelmax)N- 1 (5.24)

5~ -Erelmnax (3.2;5)

5.2.2 Conditional Symbol Probability Calculations I
Estimation of the conditional symbol probabilities makes use of standard rou-

tines for calculation of the error function or the Marcum Q function. Parls method [19]

of recursively computing the Marcum Q function was used for single level crossing

strings. The region of integration for the octant crossing symbol assignments is not

the standard rectangular region usually associated with a bivariate normal randoimi

variable. As such, approximations to the region are made by sums of probabilities

with rectangular regions of integration. This extension of the bivariate normal cu-

mulative distribution function routine is considered the only source of error for the I
octant crossing symbol probability routine. I
Octaut Crossing

Octant crossing total string c,,-. tional probability estimates are made from cor- I
responding symbol probability estimatcs. By assumption of independent Gaussian

noise, an individual octant crossing symbol probability given a particular threshold.

catalog element and location within the string, may be estimated by the formula:

P(aiT=It, C1,i) 12 jo eI(n),e-(") dudv (3.26) I

In equation (5.26), Q, is the region of plane corresponding to symbol ai. The

symbols xi and yI, are the real and imaginary component of the ith measurement.

The integral in equation (5.26) is calculated by transforming the coordinates so

that the region Q, corresponds to the 7th or 3rd octant (see Figure 5.2). Since
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octant phase magnitude

1 0-90 below

2 90-180 below 2

3 180-270 below

4 270-0 below

5 0-90 above 3 4

6 90-180 above

7 180-270 above

8 270-360 above

I Figure 5.2: Octant crossing primitive assignments.

3 calculating the probability of a rectangular region, of a Gaussian bivariate random

variable is relatively simple, the probability of the 7th octant is approximated with

the sum of probabilities of such regions. This is accomplished by first determining

a lower bound for the integral.

This lower bound is taken to be the integral ovet a staircase shaped region which

approximately covers the 7th octant region and is inscribed by the 7th octant region

(see Figure 5.3). The staircase region is determined such that the points of the stairs

are equally spaced in angle. The probability of the stai, case region is determined

from a sum of the probabilities of rectangular regions. An upper bound for the3 integral is then calculated by summing the lower bound with a sum of probabilities

of rectangular regions between the inscribed staircase region and a circumscribing

staircase region. Thus, the resulting region integration of for the upper bound

probability value completely covers the 7th octant region (see Figure 5.4).3 If the difference between the upper and lower bounds is sufficiently small then the

total 7th octant probability is taken to be the average of the two values. Otherwise

the angular spacing is halved and the binding probabilit measures are re-calculated.

The probability of the 3rd octant is calculated in a similar manner.

I
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Staircase region I

I
I

Figure 5.3: Inscribed staircase region, 5 points I
I
I

Staircase region

I
Figure 5.4: Circumscribed staircase region, 5 points 3
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Single Level Crossing Conditional Symbol Probability Calculation

For a fixed threshold, the definition of the single level crossing scheme indicates

that the probability of an entire single lcvel crossing string may also be calcu-

lated as the product of probabilities of a series of Rician random variables being

above or below the given threshold. For simplification of the program, single level

crossing strings are transformed into a strings of binary symbols in which each sym-

bol indicates "above" (1) or "below" (-1). These symbols are thus considered the

constituent symbols of the strings and total string probability (given the catalog

element and the threshold) in equation (5.2), etc. is estimated by the product of the

probabilities of a series of Rician random -ariables, all exceeding or falling below

the given threshold. Thus, the probability of a transformed single level crossing

symbol is "above" the threshold, given a particular threshold, catalog element and

* location within the string may be estimated by the formulas:

.( , , 2 1
P(ai I = t, Cj, i) = p te \ )Io ( dz (5.27)

= 1( t~! (5.28)

In equation (5.28) ft, and a 2 are as defined above and Q, is the Marcum Q function.

3 The "below" case is calculated using different integration limits or the comple-

mentary Marcum Q function. Total string probability is calculated from products

3 of these symbol probabilities.

5.2.3 Conclusions and Results

Comparison of likelihood functions generated with the analytical methods and

those generated by the histogram method are similar for the noise levels which

have been run. Misclassification results are given in Figures 5.5 and 5.6. These

figures represent results obtained under the assumption of completely known noise

variance. It is expected that the same matched noise phenomenon exhibited by the

single level crossing scheme under the histogram method will appear if mismatched

U Aoise levels are used.
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Figure 5.5: Octant crossing vs. coherent nearest neighbor

For comparison purposes, results from competing algorithms which employ the

entire measurement vector. While the performance of the nearest-neighbor classi-

fiers is usually better than that of the level-crossing classifiers, the level-crossing

based pattern representations can be specified with only L to - the number of

bits required by the nearest-neighbor specification. Thus, while the level-crossing

observations cannot be considered "sufficient statistics" they are highly information

preserving.

The consequences of this new algorithm are far reaching. Inference of more

complex generating grammars requires the use of an informant [20]. The informant I
in these algorithms is expected to answer queries about the applicability of any given

string. With the histogram method of likelihood function estimation, knowledge of I

the category of a given string is dependent upon the conditional probability of

occurrence of that string. If, for all catalog elements, a string occurs with very 3
small probability then it may take a very long time for knowledge of the category
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Figure 5.6: Single level crossing vs. nearest neighbor

to become available. The fact that any arbitrary string may be classified, no matter

how small the conditional probability of occurrence, means that automatic inference

of more complex generating grammars is possible with this technique.

The ability to classify a given symbolic representation quickly and easily alsoII
provides more flexibility in terms of classification algorithm design. The major hin-

drance in the determination of the symbolic representations conditional probability

is the dependence on the adaptive magnitude threshold. It is proposed that the in-

vestigation of non-parametric syntactic pattern recognition techniques include the

I investigation of symbolic representations which do not include adaptive thresholds

which are calculated over the entire range of measurements. Such symbolic assign-

ment algorithms could represent quantities such as differential phase or magnitude.

Furthermore, inference of the generating grammar for such symbolic assignments

could be made directly from noiseless measurements.

It is conceded here that there exists no reason to believe that the generation of
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such ad-hoc symbolic representations can be accurately modeled, in general, with a

given generating grammar. However, by restricting the range of measurements and

using automatic methods of inference, a simple classifier which uses an extremely

distilled statistic of the full observation has been demonstrated to give good per-

formance, even when compared to a classifier using the original vector observation.

Continued exploration in this area may provide insight into the "structure" of such

measurements. I
As a further note, computation time for these strings can be exceedingly long.

This becomes true when string probabilities are close for two or more catalog ele-

ments. Much effort has been expended on increasing computational efficiency. Some

improvements have come about from novel storage and retrieval schemes of string

and individual symbol probabilities.

5.3 Conversion of Syntactic Classifiers to Deterministic Forms I

The syntactic classifiers derived in [171 are non-deterministic in nature. This I
means that there may be more that one production rule which is applicable to a

particular nonterminal in a sentential form. In terms of automata, the transition 3
function may have more than one value for a given state and symbol (the automata

may have more than one place to "go" on a given symbol). Deterministic forms of

automata or grammars do not.

Derivation of a deterministic form for the syntactic classifier from the non-

deterministic form can be summarized as:

1. Label the stop state each catalog elements automata with the corresponding

catalog element name.

2. Merge the non-deterministic automata with labeled stop states together by i
adding a new start state with e (null string) transitions to the start states of

each of the automata. U
3. Convert the resulting non-deterministic, merged automata to a deterministic

form.

I
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i The conversion to a deterministic form is a well known process. It is fully

describe in (21]. One of the more noteworthy aspects of the process is that each

state of the deterministic form of the automaton is equivalent to a set of states of

the non-deterministic form of the automaton. This leads to the fact that there are

potentially 2' states in the deterministic form of the automaton, where n is the

number of states in the equivalent non-deterministic automaton.

Furthermore, the stop states in the deterministic form are determined from the

stop states of the non-deterministic form. Specifically a state in the deterministic

form or the automaton is a stop state for catalog element i if th" stop state for

catalog element i is contained in this state. Since states of the deterministic form

of the automaton correspond to sets of states from the non-deterministic form it is

easy to see that stop states can potentially correspond to acceptance of a string by

more than one catalog element. This is the result which allows for analysis of the

grammatical inference procedure.

Even though application of the algorithm for derivation of the deterministic

automata has potential to increase the number of states exponentially, it has, as

a rule, decreased the number of states. Application of the algorithm to derived

automata has revealed a number of multiply accepting states are present in the

classifier. These states may be "traced back" to determine exactly which strings

are being accepted in a multiple sense.
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Figure 5.7: Conversion to deterministic form, (a) non-deterministic automata set

with labeled final states. (b) merged non-deterministic automata. (c) resulting

deterministic automata
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